Proof.
∂Ψ(A)∂A=1∂A(1NN∑n=1∑j∈N(n)((1−μ)d2A(x(n),x(j))+μN∑l=1I[y(l)≠y(n)][1+d2A(x(n),x(j))−d2A(x(n),x(l))]+))
Since
N∑l=1[y(l)≠y(n)][1+d2A(x(n),x(j))−d2A(x(n),x(l))]+=∑l∈Nn,j1+d2A(x(n),x(j))−d2A(x(n),x(l))
and
1∂Ad2A(x(n),x(j))=1∂A(x(n)−x(j))TA(x(n)−x(j))=(x(n)−x(j))(x(n)−x(j))T(∵∂∂XaTXb=abT)=[x(1),…,x(N)](en−ej)(en−ej)T[x(1),…,x(N)]T=XC(n,j)XT
proof of ∂∂XaTXb=abT is here
(proof)
xとyの同時分布
z:=(xy)を定義すると, p(z)=p(x)p(y∣x)なので,
lnp(z)=lnp(x)+lnp(y∣x)=−12(x−μ)TΛ(x−μ)−12(y−Ax−b)TL(y−Ax−b)+const=−12{(2nd order of x,y)+−2(xT,yT)(Λμ−ATLbLb)+const}∵(L−1)T=L−1⇒LT=Lx,yの2次の項に対しては
2nd order of x,y=xT(Λ+ATLA)x+yTLy−yTLAx−xTATLy=(xT,yT)(Λ+ATLA−ATL−LAL)(xy)=zTRz
ゆえに,
lnp(z)=−12{zTRz−2zT(Λμ−ATLbLb)}+const
また、シューアの補行列より
R−1=(Λ+ATLA−ATL−LAL)−1=(Λ−1Λ−1ATAΛ−1L−1+AΛ−1AT)
であるので,
p(z)=const⋅exp{−12(zTRz−2zTc)}where c:=(Λμ−ATLbLb)=const⋅exp{−12(z−μz)TR(z−μz)}wehere c=Rμz⇔μz=R−1c∫dzf(z)=1より
f(z)=|R−1|−1/2(2π)2N/2exp(−12(z−μz)TR(z−μz))
また,
μz=R−1c=(Λ−1Λ−1ATAΛ−1L−1+AΛ−1AT)(Λμ−ATLbLb)=(μAμ+b)多変数正規分布の分割公式をp(y)に対して用いると
p(y)=(p(xb)=N(xb∣μb,Σbb))=N(y∣Aμ+b,L−1+AΛ−1AT)
同様に
p(x∣y)=N(μx∣y,Σx∣y)
に関しても多変数正規分布の分割公式を用いると,
μx∣y=(=μa−Λ−1aaΛab(xb−μb))=μ−(ATLA+Λ)−1⋅(−ATL)(y−Aμ−b)=(ATLA+Λ)−1(ATL(y−b)−ATLAμ)+μ=(ATLA+Λ)−1(ATL(y−b)+Λμ)−(ATLA+Λ)−1(Λμ+ATLAμ)+μ=(ATLA+Λ)−1(ATL(y−b)+Λμ)Σx∣y=(Σa∣b=Λ−1aa)=(Λ+ATLA)−1参考文献
1.2. Appendix
1.2.1. 2次形式の微分
Let X be a N×N matrix, and a,b are N-dimensional vectors. Then,
∂∂XaTXb=abTwhere aT is the transpose of a
(Proof)
(A)i,j denotes the (i,j) element of matrix A.
(∂∂XaTXb)ij=∂∂xi,jaTXb=∂∂xi,jN∑k=1(N∑l=1akxk,l)bl=aibj=(abT)i,j
1.2.2. シューアの補行列
シューアの補行列(Schur complement matrix)
Suppose A, B, C, D are respectivesly p×p,p×q,q×p and q×q matrices, and D is invertible. If M=A−BD−1C is invertible, then
(ABCD)−1=(M−1−M−1BD−1−D−1CM−1D−1+D−1CM−1BD−1)
Similarly, if A and R=D−CA−1B are invertible
(ABCD)−1=(A−1+A−1BR−1CA−1−A−1BR−1−R−1CA−1R−1)
Woodbury matrix identity
If we compare partitioned matrices, we get below results.